This version specified for the following genes: CDKL5, FOXG1, MECP2, SLC9A6, TCF4, UBE3A Expert Panel Page: https://clinicalgenome.org/affiliation/50022/ Summary of changes in Version 2: Modifications to PP3 and BP4 (in silico prediction criteria) that affect splice site prediction, including thresholds to use for splice site prediction in silico tools. | Gene | Disease (MONDO ID) | Transcript | |--------|---------------------------------------|----------------| | CDKL5 | CDKL5 disorder (MONDO: 0100039) | NM_001323289.2 | | FOXG1 | FOXG1 disorder (MONDO:0100040) | NM_005249.4 | | MECP2 | Rett syndrome (MONDO:0010726) | NM_004992.3 | | SLC9A6 | Christianson syndrome (MONDO:0010278) | NM_006359.2 | | TCF4 | Pitt-Hopkins syndrome (MONDO:0012589) | NM_001083962.1 | | UBE3A | Angelman syndrome (MONDO:0007113) | NM_130838.2 | #### Summary of ACMG-AMP Criteria for Rett /Angelman-like Syndromes | PATHOGENIC CRITERIA | | | |---------------------|--|----------------------| | Criteria | Criteria Description | Specification | | VERY STRONG CRI | TERIA | | | PVS1 | Null variant in a gene where loss of function is a known mechanism of disease. Use as defined by ClinGen SVI working group (PMID: 30192042) FOXG1: PVS1 is applicable up to p.S468. MECP2: PVS1 is applicable up to p.E472, for any frameshift variant that results in a read-through of the stop codon, for canonical splice site variants predicted to result in an out-offrame product, and for canonical splice site variants or single in-frame deletions predicted to preserve the reading frame (exon 3). PVS1 is not applicable for initiation codons. UBE3A: PVS1 is applicable up to p.K841, for any frameshift variant that results in a read-through of the stop codon, for initiation codon variants, and for canonical splice site variants predicted to result in an out-of-frame product. TCF4: PVS1 is applicable up to p.E643, for any frameshift variant that results in a read-through of the stop codon, for canonical splice site variants predicted to result in an out-of-frame product, and for canonical splice site variants or single | Disease-
Specific | This version specified for the following genes: CDKL5, FOXG1, MECP2, SLC9A6, TCF4, UBE3A Expert Panel Page: https://clinicalgenome.org/affiliation/50022/ | PS2_Very Strong | in-frame deletions predicted to preserve the reading frame (exon 15). SLC9A6: PVS1 is applicable up to p.A563, for canonical splice site variants predicted to result in an out-of-frame product, and for canonical splice site variants or single in-frame deletions predicted to preserve the reading frame (exon 10). CDKL5: Do not use PVS1 for truncating variants in CDKL5 C-terminus (exons 19-21, or after p.P904) when using the historically used transcript (NM_003159.2). PVS1 is applicable up to p.R948 when using the major brain isoform which has an alternative C-terminus (NM_001323289.2), for canonical splice site variants predicted to result in an out-of-frame product, for canonical splice site variants or single in-frame deletions predicted to preserve the reading frame (exons 7, 10, 13), and for the non-coding CDKL5 exon (exon 1). De novo (paternity confirmed) in a patient with the disease and no family history. | Strength | |-----------------|--|----------------------| | | | | | | ≥2 independent occurrences of PM6 and one occurrence of
PS2. | | | PM6_VeryStrong | Confirmed de novo without confirmation of paternity and maternity. | Strength | | STRONG CRITERIA | | | | PS1 | Same amino acid change as a previously established pathogenic variant regardless of nucleotide change. | None | | PS2 | <i>De novo</i> (maternity and paternity confirmed) in a patient with the disease and no family history. | None | | PS3 | Well-established in vitro or in vivo functional studies supportive of a damaging effect RNA studies that demonstrate abnormal splicing and an out-of-frame transcript Do not use for canonical splice site variants and when PVS1 is used | Disease-
Specific | | PS4 | The prevalence of the variant in affected individuals is significantly increased compared with the prevalence in controls. • 5+ observations | Strength | This version specified for the following genes: CDKL5, FOXG1, MECP2, SLC9A6, TCF4, UBE3A Expert Panel Page: https://clinicalgenome.org/affiliation/50022/ | PVS1_Strong | Null variant in a gene where loss of function is a known mechanism of disease. FOXG1: PVS1_Strong is applicable for any truncating variant from p.S469 to p.Q480. UBE3A: PVS1_Strong is applicable for any truncating variant from p.K842 to p.G850 and for canonical splice site variants that flank exons 7, 8 (in-frame exons). SLC9A6: PVS1_Strong is applicable for any truncating variant from p.C564 to p.T601 and for canonical splice site variants that flank exon 3 (in-frame exon). | Disease-
Specific | |-------------------|--|----------------------| | PM4_Strong | Protein length changes due to in-frame deletions/insertions in a non-repeat region or stop-loss variants. • PM4_Strong is applicable to stop-loss variants in MECP2 and UBE3A. | Disease-
Specific | | PM5_Strong | Missense change at an amino acid residue where a different missense change determined to be pathogenic has been seen before. • ≥2 different missense changes affecting the amino acid residue. • Do not apply PM1 in these situations. | Strength | | PM6_Strong | Confirmed de novo without confirmation of paternity and maternity. | Strength | | PP1_Strong | Co-segregation with disease in multiple affected family members | Strength | | MODERATE CRITERIA | | | | PM1 | Located in a mutational hot spot and/or critical and well-established functional domain. • FOXG1: (Forkhead: aa 181-275) • TCF4: (basic Helix-Loop-Helix domain (bHLH): aa 564-617) • CDKL5: (ATP binding region: aa 19-43; TEY phosphorylation site: aa 169-171) • MECP2: (Methyl-DNA binding (MDB): aa 90-162; Transcriptional repression domain (TRD): aa 302-306 • UBE3A: 3' cysteine binding site: aa 820 • Not to be used for SLC9A6 | Disease-
Specific | **Date Approved:** 12/13/2021 This version specified for the following genes: CDKL5, FOXG1, MECP2, SLC9A6, TCF4, UBE3A Expert Panel Page: https://clinicalgenome.org/affiliation/50022/ | PM3 | For recessive disorders, detected in trans with a pathogenic variant. • Do not use | NA | |---------------|--|----------------------| | PM4 | Do not use Protein length changes due to in-frame deletions/insertions in a non-repeat region or stop-loss variants. CDKL5: Do not use for in-frame deletions/insertions in CDKL5 C-terminus (exons 19-21, or after p.904) when using the NM_003159.2 transcript. MECP2: Do not use PM4 for in-frame deletions/insertions in the Proline-rich region of gene p.381-p.405) FOXG1: Do not use PM4 for in-frame deletions/insertions in the Histidine-rich region (p.37-p.57), Proline and Glutamine-rich region (p.58-p.86) and Proline-rich region (p.105-p.112). | Disease-
Specific | | PM5 | Missense change at an amino acid residue where a different missense change determined to be pathogenic has been seen before. • Applicable to all genes as written • A Grantham or BLOSUM score comparison can be used to determine if the variant is predicted to be as or more damaging than the established pathogenic variant. | None | | PM6 | Confirmed de novo without confirmation of paternity and maternity. | None | | PVS1_Moderate | Null variant in a gene where loss of function is a known mechanism of disease. FOXG1: PVS1_Moderate is applicable for any truncating variant distal of p.Q480. MECP2: PVS1_Moderate is applicable for any truncating variant distal of p.E472. UBE3A: PVS1_Moderate is applicable for any truncating variant distal of p.G850. TCF4: PVS1_Moderate is applicable for any truncating variant distal of p.E643 and for single exon deletions that involve just non-coding exon 20. SLC9A6: PVS1_Moderate is applicable for any truncating variant between p.Y602 to p.A669 and any frameshift variant that results in a read-through of the stop codon. CDKL5: PVS1_Moderate is applicable for any truncating variant distal of p.R948 (when using the major brain isoform, NM_001323289.2) and for canonical splice site variants that flank exon 17 (in-frame exon). | Disease-
Specific | **Date Approved:** 12/13/2021 This version specified for the following genes: CDKL5, FOXG1, MECP2, SLC9A6, TCF4, UBE3A Expert Panel Page: https://clinicalgenome.org/affiliation/50022/ | PS4_Moderate | The prevalence of the variant in affected individuals is significantly increased compared with the prevalence in controls. • 3-4 observations | Strength | |-----------------|--|----------------------| | PP1_Moderate | Co-segregation with disease in multiple affected family members 3-4 informative meiosis Note: individuals must have disease consistent with reported phenotype (even if on the mild end of spectrum of the disease) | Strength | | SUPPORTING CRIT | ERIA | | | PP1 | Co-segregation with disease in multiple affected family members 2 informative meiosis Note: individuals must have disease consistent with reported phenotype (even if on the mild end of spectrum of the disease) | Strength | | PP2 | Missense variant in a gene that has a low rate of benign missense variation and where missense variants are a common mechanism of disease. • Do not use | N/A | | PP3 | Multiple lines of computational evidence support a deleterious effect on the gene or gene product • For missense variants use REVEL with a score ≥ 0.75 • For splice site variants use MaxEntScan, NNSPLICE and SpliceSiteFinder-like when all of the prediction programs support significant splicing alteration (significant splicing alterations defined as ≥15% decrease to the natural splice site and ≥70% gain in prediction strength of cryptic splice site) | None | | PP4 | Phenotype specific for disease with single genetic etiology. • See gene specific clinical phenotype guidelines | Disease-
Specific | | PP5 | Reputable source recently reports variant as pathogenic but the evidence is not available to the laboratory to perform an independent evaluation • Do not use | N/A | | PVS1_Supporting | Null variant in a gene where loss of function is a known mechanism of disease. • PVS1_Supporting is applicable for initiation codon variants in CDKL5, FOXG1, SLC9A6 and TCF4. | Disease-
Specific | | PS3_Supporting | Well-established in vitro or in vivo functional studies supportive of a damaging effect RNA studies that demonstrate abnormal splicing and an inframe product (unless it affects an in-frame exon specified in the PVS1 section) See tables for FOXG1, MECP2, CDKL5, TCF4, UBE3A | Disease-
Specific | This version specified for the following genes: CDKL5, FOXG1, MECP2, SLC9A6, TCF4, UBE3A Expert Panel Page: https://clinicalgenome.org/affiliation/50022/ | | Not to be used for SLC9A6 | | |----------------|---|----------| | PS4_Supporting | The prevalence of the variant in affected individuals is significantly increased compared with the prevalence in controls. • Use for 2 nd independent occurrence | Strength | | PM2_Supporting | Absent/rare from controls in an ethnically-matched cohort population sample. • Use if absent, zero observations in control databases | Strength | | PM4_Supporting | Protein length changes due to in-frame deletions/insertions in a non-repeat region or stop-loss variants. • Smaller in-frame events (< 3 amino acid residues) unless they occur in a functionally important region (see PM1 for functionally important domains for each gene). | Strength | | BENIGN CRITERIA | | | |-----------------|---|------------------| | Criteria | Criteria Description | Specification | | STAND ALONE CI | RITERIA | | | BA1 | Allele frequency above 0.05% | Disease-Specific | | | Use large population databases (i.e. gnomAD) | | | | Use if variant is present at ≥0.0003 (0.03%) in any sub- | | | | population | | | | Use if allele frequency is met in any general continental | | | | population dataset of at least 2,000 observed alleles | | | STRONG CRITERIA | A | | | BS1 | Allele frequency greater than expected for disease (0.025%) | Disease-Specific | | | Use large population databases (i.e. gnomAD) | | | | Use if variant is present at ≥0.00008 (0.008%) and <0.0003 | | | | (0.03%) in any sub-population | | | | Use if allele frequency is met in any general continental | | | | population dataset of at least 2,000 observed alleles | | | BS2 | Observed in the heterozygous/hemizygous state in a healthy | Strength | | | adult | | | | • 2 unaffected (related or unrelated) Het (FOXG1, TCF4), Hemi | | | | (SLC9A6), Het or Hemi (CDKL5, MECP2) | | | | 4 unaffected (related and maternally inherited or unrelated) | | | | Het (<i>UBE3A</i>) | | Related publication(s): PMID 34837432 **Date Approved:** 12/13/2021 This document is archived and versioned on ClinGen's website. Please check https://www.clinicalgenome.org/affiliation/50022/docs/assertion-criteria for the most recent version. This version specified for the following genes: CDKL5, FOXG1, MECP2, SLC9A6, TCF4, UBE3A Expert Panel Page: https://clinicalgenome.org/affiliation/50022/ | | Well-established in vitro or in vivo functional studies shows no | Disease-Specific | |-----------------|---|------------------| | | RNA functional studies that demonstrate no impact on splicing and transcript composition. It can be downgraded based on quality of data. Not applicable for these genes for other functional studies (see tables for other accepted functional studies) | · | | BS4 | Lack of segregation in affected members of a family. Absent in a similarly affected family member, when seen in two or more families Need to confirm that the family member is 'affected with a neurodevelopmental phenotype consistent with the gene' at a minimum. | Strength | | | Variant found in a case with an alternate molecular basis for disease | Strength | | SUPPORTING CRIT | ERIA | | | BP1 | Missense variant in gene where only LOF causes disease • Do not use | N/A | | | Observed in trans with a pathogenic variant for a fully penetrant dominant gene/disorder; or observed in cis with a pathogenic variant in any inheritance pattern. BP2 is applicable for MECP2, TCF4, FOXG1 for in trans state BP2 is not applicable for SLC9A6, UBE3A and CDKL5 for in trans state | Disease-Specific | | | In-frame deletions/insertions in a repetitive region without a known function Inframe expansions or deletions in <i>FOXG1</i> repetitive regions: poly His (p.His47-p.His57), poly Gln (p.Gln70-p.Gln73) and poly Pro (p.Pro58-p.Pro61; p.Pro65-p.Pro69; p.Pro74-p.Pro80) | Disease Specific | | | Multiple lines of computational evidence suggest no impact on gene or gene product • For missense variants use REVEL with a score ≤ 0.15 • For splice site variants use MaxEntScan, NNSPLICE and SpliceSiteFinder-like when the majority of the prediction programs do not support significant splicing alteration (significant splicing alterations defined as ≥15% decrease to the natural splice site and ≥70% gain in prediction strength of a cryptic splice site) | None | | | Variant found in a case with an alternate molecular basis for | Disease Specific | Related publication(s): PMID 34837432 This document is archived and versioned on ClinGen's website. Please check https://www.clinicalgenome.org/affiliation/50022/docs/assertion-criteria for the most recent version. **Date Approved:** 12/13/2021 This version specified for the following genes: CDKL5, FOXG1, MECP2, SLC9A6, TCF4, UBE3A Expert Panel Page: https://clinicalgenome.org/affiliation/50022/ | | UBE3A: variant should also be maternally inherited in the case with an alternate molecular basis for disease for this criteria to be used. SLC9A6: the variant should be in the hemizygous state in the case with an alternate molecular basis for disease to be used. Do not apply for any gene if variant is de novo | | |----------------|---|----------| | BP6 | Reputable source recently reports variant as benign but the evidence is not available to the laboratory to perform an independent evaluation • Do not use | N/A | | BP7 | A synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice consensus sequence nor the creation of a new splice site AND the nucleotide is not highly conserved. • Defined "not highly conserved" regions in BP7 as those with PhastCons score <1 and/or PhyloP score <0.1 and/or the variant is the reference nucleotide in one primate and/or three mammal species. | None | | BS2_Supporting | Observed in the heterozygous/hemizygous state in a healthy adult • 1 unaffected (related or unrelated) Het (FOXG1, TCF4), Hemi (SLC9A6), Het or Hemi (CDKL5, MECP2) • 2 unaffected (related and maternally inherited or unrelated) Het (UBE3A) | Strength | | BS4_Supporting | Lack of segregation in affected members of a family. Absent in a similarly affected family member Need to confirm that the family member is 'affected with a neurodevelopmental phenotype consistent with the gene' at a minimum. | Strength | *Key:* **Disease-Specific:** Disease-specific modifications based on what is known about disorders; **Strength:** Increasing or decreasing strength of criteria based on the amount of evidence; **N/A:** not applicable for genes; **None:** no changes made to existing criteria definitions.